BERHAMPURUNIVERSITY

Syllabus

For

Two Years M.Sc. Program

2023-24

P.G. Department of Physics

Berhampur University,

Berhampur-76007 (Odisha)

2023

M.SC. PHYSICS SYLLABI BERHAMPUR UNIVERSITY BHANJA BIHAR, BERHAMPUR-7600007

1			Hrs	Cre	Exam	N	Iarks	
	Course	Course title	per Week	dit	Hrs	Mid Sem	End sem	Total
I	PHY-C 101	Mathematical Methods in Physics	4	4	3	20	80	100
	PHY-C102	Classical Mechanics	4	4	3	20	80	100
	PHY- C103	Computer Programming And Numerical Analysis	4	4	3	20	80	100
	PHY-C104	Quantum Mechanics-I	4	4	3	20	80	100
	PHY- P105	Computer Programming In Physics(Practical)	12	6	6	20	80	100
		Total	28	22				500
II	PHY- C201	Classical Electrodynamics	4	4	3	20	80	100
	PHY- C202	Statistical Mechanics	4	4	3	20	80	100
	PHY- C203	Basic Solid-State Physics	4	4	3	20	80	100
	PHY- C204	Quantum Mechanics-II	4	4	3	20	80	100
	PHY-P205	Optics(Practical)	12	6	4	20	80	100
		Material Characterization Technique OR DFT and Materials Modelling						
		Total	28	22				500

	PHY- C301	Relativistic Quantum Mechanics & Field Theory	4	4	3	20	80	100
III	PHY- C302	Electronics	4	4	3	20	80	100
	PHY- E303 A OR PHY- E303B	Condensed Matter & Materials Physics-I Or Nuclear Science-1(N.P.)	4	4 4	3	20 20	80 80	100
	PHY- EP304	Modern Physics(Practical)	12	6	4	20	80	100

	PHY-VAC305	Optical Fiber Sensor Or Fiber Optics						
		Or Atomic And Molecular Spectra						
	PHY- CT300	Fibre Optics And Optoelectronics	04	04	03	20	80	100
		Total	28	22				500
	PHY- E401A	Elementary Particle	4	4	3	20	80	100
IV	OR PHY-E401B	Physics Or GTR	4	4	3	20	80	100
	PHY- C402	Basic Nuclear Physics	4	4	3	20	80	100
	PHY-CE403	Project And Seminar	4	4			50 50	100
	PHY- CE404A	Condensed Matter &Materials Physics II	4	4	3	20	80	100
	OR PHY- CE404B	Or Nuclear Science-II	12	6	4	20	80	100
	PHY- CE405A OR PHY- CE405B	Condensed Matter &Materials Physics(Practical) Or Nuclear Science	12	6	4	20	80	100
		(Practical)						
	PHY- AC406	Cultural Heritage Of South Odisha.						
		Total	28					500
		Grand total	112	88				2000

Note: C: Core paper, P: Practical, E: Elective, S: Seminar, VAC: Value added course, CT: Credit transfer

A student has to register for 14 core papers (including three core labs), 6 elective papers (including one lab in elective), and one project and seminar, two value added courses

Programme Outcome:

Instil among the students an attitude of being inquisitive so that they are
capable of independent and critical thinking.
Train up the students in such a way that they can objectively carry out
investigations, scientific and/or otherwise, without being biased or without
having any preconceived notions.
Equip the students with such skills to make them understand the mysteries
of nature at different scales of space and time, from subnuclear to
cosmological.
Enable the students to analyze problems starting from first principles,
evaluate and validate experimental results, and draw logical conclusions.
Prepare the students to pursue research careers, careers in academics,
industries in Physical Science and allied fields.
As technology exploits the rules of Physics, students properly trained in
Physics can be good researchers in the Field of technology too.
Imbibe effective scientific and/or technical communication abilities among
the students.

First Semester

Sub Code: PHY- C101	Mathematical Methods in Physics			
Semester:1	Credit:4 Core Course			
Pre-requisites: Basic understanding of real analysis, Complex numbers, Group theory				

Course outcome:

- ✓ To learn about various mathematical tools employed to study physics problems.
- ✓ To get good experience in using and understanding areas like complex variables, Tensor analysis, Group Theory and special functions.
- ✓ To strengthen the student's analytical abilities and help them formulate different relationships in mechanics and physics compactly.

Unit-1 12 hours

Complex Variables: Analytic functions, Contour integrals, Cauchy's integral theorem, Laurent's series, singular points, residues and the Residue Theorem, Evaluation of real definite and indefinite integrals by contour integration, Indented semi-circular contour, evaluation of single and multivalued functions, branch points and branch cuts Contour integration involving branch point.

Unit -2 12hour

Tensors: Introduction, Types of tensor, Invariant tensor, epsilon tensor, Pseudo tensor, thealgebra of tensor, Quotient law, Metric Tensor, Covariant derivative of tensor, Fundamental Tensor, Cartesian tensor, Christoffel symbol.

Unit -3

Group Theory: Definitions of groups, subgroups and classes, Isomorphism, Homomorphism, Cayley's theorem, Group representations, Orthogonality theorem, characters, Orthogonality relation for group character, Character table, Preliminary idea about infinite group, calculation of generator, Calculation of generator associated with S.U. (2) and SO(3) group,

Unit -4 12 hours

Special Functions: Legendre Polynomials, generating functions, Recurrence formulae, Orthogonality properties of Legendre's polynomial of 1st kind, Bessel generating function, Bessel function of 1st and 2nd Kind, Recurrence formulae, Orthogonality properties of Bessel's polynomials, Spherical Bessel functions, Fourier and Laplace transformation.

Text books:

- 1. Mathematical Methods of Physics by Mathews and Walker (W. A. Benjamin Inc.)
- 2. Matrices and Tensors in physics by A. W. Joshi (New Age International Publisher)
- 3. Mathematical Methods in the physical Science by Mary L. Boas (Wiley-India)

Reference Books:

- 1. Mathematical Methods for Physicist by G. Arfken and H. Weber, Academic Press (Elsevier)
- 2. Elements of Group Theory by A. W. Joshi (New Age International Publisher)
- 3. Mathematical Physics by H. K.Das and Dr. R. Verma (S. Chand & Company L.T.D.)
- 4. Mathematical Physics by P. K. Chattopadhyaya (New Age International)

Sub. Code: PHY- C102	Classical M	echanics		
Semester: 1	Credit: 4	Core Course		
Pre-requisites: Basic understanding of generalized coordinate, Newtonian dynamics				
Course outcomes:				
✓ To understand degrees of freedom and dynamics of a rigid body motion.				
✓ To understand complex kind of gyroscopic motion as like heavy symmetric top.				
✓ To make out a clear distinction of Lagrangian and Hamiltonian dynamics.				
✓ To understand Hamiltonian dynamics and evolution of quantum mechanics.				
✓ To understand sma	✓ To understand small oscillation occurring in micro and macro-systems			

Unit-1 10 hours

KINEMATICS OF RIGID BODY MOTION:

Independent coordinates of a rigid body, Orthogonal transformations, Eulerian angles, infinitesimal rotations, rate of change of vector, Coriolis force, angular momentum and kinetic energy of motion about a point, inertial tensor and the moment of inertia, Eigen values of Inertial tensor and the principal axis transformation, methods of solving rigid body problems and Euler's equations of motion, torque free motion of a rigid body. Heavy symmetrical top with one point fixed.

Unit-2

HAMILTONIAN FORMULATION: Calculus of Variations and Euler-Lagrange's Equation, Brachistochrone Problem, Hamilton's Principle, Extension of Hamilton's Principle to Nonholonomic Systems, Legendre Transformation and the Hamilton Equations of Motion, Physical Significance of Hamiltonian, Derivation of Hamilton's Equations of Motion from a Variational Principle, Routh's Procedure, Principle of Least Action

Unit-3 10 hours

CANONICAL TRANSFORMATIONS: Canonical Transformation, Types of Generating Function, conditions for canonical transformation, Integral Invariance of Poincare, Poisson Bracket, Poisson's Theorem, Lagrange Bracket, Poisson and Lagrange Brackets as Canonical Invariant, Infinitesimal Canonical transformation and Conservation Theorems, Liouville's Theorem Hamilton Jacobi Theory: Hamilton-Jacobi Equation for Hamilton's Principal Function, Harmonic Oscillator and Kepler problem by Hamilton-Jacobi Method, Action-Angle Variables for completely Separable System, Kepler Problem in Action-Angle Variables

Unit-4 10 hours

SMALL OSCILLATION: Problem of Small Oscillations, Example of linear triatomic molecule and two coupled Oscillator, General Theory of Small Oscillations, Normal Coordinates and Normal Modes of Vibration.

Test Books:

1. Classical Mechanics- by H. Goldstein (Addison-Wesley)

Reference books:

- 1. Classical Mechanics by S. N. Biswas, Books and Allied Publisher Ltd.
- 2. Classical Mechanics by J.C. Upadhay, Himalaya Publishing House.
- 3. Classical Mechanics by Landau and Liftshitz (Butter Worth)

Sub Code: PHY-C103	Computer Prog	ramming and Numerical Analysis	
Semester:1	Credit:4	Core Course	
Pre-requisites: Basic knowledge of Computer Mathematical Physics			

Course outcomes:

- ✓ To understand the importance of computer application in Science and engineering.
- To learn and understand basic computer language FORTRAN 77.
- To compute and develop algorithms for solution of science and engineering problems.

Unit -1 10 hours

FORTRAN 77: Character, Data types, expressions, statements, input and output commands, do loop, condition and dimension statement, character and data managements, array manipulations, subprogram, and subroutine.

Unit -2. (Only Programming)

12 Hours

FORTRAN Programs: Evaluation of series, $(Sin(x), Cos(x), tan(x), Log(x), e^{\pm x}, tan^{-1}(x))$ functions etc.), Matrix manipulation, finding the root of an equation by Newton-Raphson method, Numerical integrations by trapezoidal and Simpson method, finding prime numbers, Arrangement of numbers (increasing and decreasing order), interpolation (Newton's and Lagrange's method), Runga-Kutta method and similar other problems

.Unit -3 12 hours

Solution of simultaneous linear equations, Gaussian elimination, Pivoting, Iterative Method, Matrix Inversion, Root of a transcendental equation by Newton-Rapson Method, Least square fitting. Eigen values and eigenvectors of matrices, power and Jacobi method.

Unit -4 12 hours

Eigen values and eigenvectors of matrices, power and Jacobi method, Finite Differences, Interpolation with equally Spaced and unevenly spaced points (Newton's and Lagrange's method), Forward and Backward Interpolation, Extrapolation, Numerical Integration by trapezoid and Simpson's rule, Solution of first and second order differential equation using Runge-Kutta (RK-4) method.

Text books:

- 1. Fundamentals of Computers by V. Rajaraman, Prentice Hall of India Ltd Publishers.
- 2. Fortran 77 and Numerical Methods by C Xavier, New Age International (P) Ltd Publishers.
- 3. Numerical Methods in Science and Engineering by S. Rajasekaran, S.chand

Reference Books:

- 1. Numerical Mathematical Analyses by J. B. Scarborough, Oxford and I.B.H. Publishing Company
- 2. Numerical methods for engineering and scientific computation by M K Jain (Wiley Eastern
 - 3. Numerical Methods for Scientific and Engineering Computation by MK Jain, SRKIyengar and R Jain, New Age International (P) Ltd Publishers.

Sub Code: PHY- C104		Quantum Mechanics -1
Semester:1	Credit:4	Core Course

Pre-requisites: : Basic Mathematical Physics

Course Outcomes:

- ✓ To apply quantum mechanics to the dynamics of single particle in one-,,two and three-dimensional potential fields
- ✓ To strengthen the analytical abilities of the student and help them to apply it in different branches of physics compactly.

Unit –1 14 Hours

GENERAL PRINCIPLES OF QUANTUM MECHANICS:

Postulates of Quantum Mechanics and meaning of measurement, Operators and their expectation values, .Dirac Notations, Linear vector space, Ket and Bra vectors, Scalar product of vectors and their properties, Dirac delta function, linear operators, Adjoint operators, Unitary Operators, Expectation values of dynamical variables and physical interpretation of Hermitian operators, Eigen values and eigen vectors, orthonormality of eigen vectors, probability interpretation, Degeneracy, Schmidt method of orthogonalization, Expansion theorem, Completeness and closure properties of the basis set, Coordinate and momentum representations, compatible an Incompatible observables, Commutator algebra, uncertainty relation as a consequence of non-

commutability, minimum uncertainty wave packet, Representations of Ket and Bra vectors and operators in matrix form, Unitary transformation of basis vectors and operators.

Unit –2 12 Hours

QUANTUM DYNAMICS:

Time evolution of quantum states, Time evolution operator and its properties, Schrödinger, Heisenberg and Interaction picture, Equations of motion, Operator method solution of

Harmonic oscillator problem, Matrix representation and time evolution of creation and annihilation operators.

Unit-3 14 Hours

ROTATION AND ORBITAL ANGULAR MOMENTUM:

Rotation Matrix, Orbital angular momentum operators as generators of rotation, Lx, Ly, Lz and L^2 and their Commutation relations, Raising and Lowering operators (L+ and L-), Lx, Ly, Lz and L^2 in Spherical Polar coordinates, Eigen values and Eigen functions of Lz and L^2 (operator method), Matrix representation of Lx, Ly, Lz and L^2 .

Unit –4 12 Hours

SPIN ANGULAR MOMENTUM:

Spin ½ particles, Pauli spin matrices and their properties, Eigen values and Eigen functions, Spin and rotations. Total angular momentum: Total angular momentum J, Eigen value problem of Jz and J^2 , Angular momentum matrices, Addition of angular momentum and C. G. coefficients for the states with (i) $j_1 = \frac{1}{2}$ and $j_2 = \frac{1}{2}$ (ii) $j_1 = 1$ and $j_2 = \frac{1}{2}$.

Text books:

1." Quantum Mechanics: Concepts and Applications" by Nouredine Zettile John Wileyandsons.

Reference Books:

- 1. "Quantum Mechanics", L.I. Schiff L.I 3rd Ed, McGraw Hill Book Co.
- 2. "Quantum Mechanics" E. Merzbacher, 2nd Ed., John Wiley & Sons.
- 3. , "Quantum Physics", S.Gasiorowicz John Wiley.
- 4. "A Text Book of Quantum Mechanics" by P.M.Mathews . and Venkatesan , Tata McGraw Hill.
- 5. Introduction to Quantum Mechanics, by D.J.Griffiths ,2nd edition ,Pearson Publications

	Sub Code: PHY- P105	Computer Programming and Numerical		
		Analysis (La	boratory work)	
	Semester:1	Credit:4	Core Course	
F	Pro requisites: Resig knowledge of computer			

Pre-requisites: Basic knowledge of computer

Course Outcomes:

- ✓ To learn and practice basic computer language FORTRAN 77.
- ✓ To program different methods associate with Physics and Engineering
- 1. Numerical integration by trapezoidal method
- 2. Numerical integration by Simpson method
- 3. Solution of first and second order differential equation by RungaKutta Method
- 4. Matrix addition, subtraction, multiplication and manipulation
- 5. Matrix inversion
- 6. Finding the roots of an equation by Newton-Rapson method
- 7. Least square fitting of linear parameters
- 8. Determination of prime numbers.
- 9. To arrange a set of numbers in increasing or decreasing order
- 10. Sum of A.P and G.P series, Sine and Cosine series
- 11. Factorial of a number
- 12. Evaluation of log and exponentials by summing of series
- 13. Any other suitable experiments.

Second Semester

Sub Code: PHY- C201	: Classical Electrodynamics		
Semester:2	Credit:4	Core Course	

Pre-requisites: Basic Mathematical Physics, (ii) Classical Electricity and Magnetism.

Course Outcomes:

- ✓ To emphasize electric and magnetic radiation field phenomena and Bremsstrahlung radiation in a Coulomb field and Cherenkov radiation,
- ✓ Electromagnetic Scattering.

Unit –I 14 Hours

a. Covariant formulation of electrodynamics:

Lorentz transformation; Scalars, vectors and Tensors; Maxwells equations and equations of continuity in terms of $A\mu$ and $J\mu$; Electromagnetic field tensor and its dual; Covariant form of Maxwell's equations; Lagrangian for a charged particle in presence of external electromagnetic field and Maxwell's equation as Euler-Lagrange equations.

b. The Inhomogeneous Wave equation:

Wave equations for potentials, solution by Fourier analysis, Radiation field, Radiation energy, Hertz potential, Computation of radiation fields by Hertz method, electric dipole radiation, multipole-radiation.

Unit –II 12 Hours

- a) Lienard-Wiechart potential and Field of a uniformly moving electron: Lienard-Wiechart potential, Fields of a charge in uniform motion, Direct solution of the wave equation, Convection potential, Virtual photon concept.
- (b) Wave guides, Propagation of electromagnetic waves in rectangular wave guides.

Unit –III 14 Hours

Radiation from Accelerated Charges:

Radiation from an accelerated charge, Fields of an accelerated charge radiation at low velocity, Case of velocity parallel to acceleration, radiation from circular orbits, Radiation with no restrictions on the acceleration or velocity, Classical cross section for bremsstrahlung in aCoulomb field, Cherenkov radiation.

Unit –IV 14 Hours

Radiation, scattering and dispersion:

Radiative damping of a charged harmonic oscillator, forced vibrations, scattering by an individual free electron, scattering by a bound electron, absorption of radiation by an oscillator, equilibrium between an oscillator and a radiation field, effect of a volume distribution of scatters, scattering from a volume distribution, Rayleigh scattering, the dispersion relation.

Text Book:

1. "Classical Electricity and Magnetism" by Wolfgang K.H.Panofsky and Melba Philips ,Second Edition.

Reference books:

- 1 "Classical Electrodynamics", Jakson J D, John Wiley.
- 2. 'Introduction to Electrodynamics', Griffiths D J, Prentice Hall.

Sub Code: PHY-C202	Statistical Mechanics			
Semester:2	Credit:4	Core Course		
Pre-requisites: Basic laws of thermodynamics				

Course Outcomes:

- ✓ To develop a working knowledge of statistical mechanics.
- ✓ To learn statistical interpretation of various phenomena like ensembles, ideal systems, photon gas, Low temperature physics and their applications, Bose Einstein condensation, phase transition.
- ✓ To explore its applications in other branches of physics like material science and the physics of condensed matter.

Unit -1 12 Hours

Classical Statistical Mechanics: Postulates of classical statistical mechanics, Lowville's theorem microcanonical ensemble, derivation of thermodynamics, equi-partition theorem, Classical ideal gas, Gibb's paradox, .canonical ensemble, energy fluctuation in canonical ensemble, grand canonical ensemble, density fluctuation in grand canonical ensemble, equivalence of canonical and grand canonical ensemble.

Unit -2

12 Hours

Quantum Statistical Mechanics: Postulates of quantum statistical mechanics, density matrix, Liouville's theorem, ensembles in quantum statistical mechanics, third law of thermodynamics, Ideal gases in micro-canonical ensemble. Particle in a box, M.B., B.E. and F.D. distributions. The Ideal Gases in Grand Canonical Ensemble, Equation of state of Ideal Bose Gas, Fermi Gas.

Unit -3

12 Hours

Fermi Gas: The Equation of state of an Ideal Fermi gas, High temperature and low Densities, Low temperature and High Densities, Theory of White Dwarf Stars, Pauli par magnetism.

Unit -4 12 Hours

Bose Gas:Ideal Bose gas, Photon, Planck's law, Bose-Einstein condensation. 1st order and 2nd order phase transitions, Ginzburg landau theory of phase Transition, Ising model (one dimensional Ising model)

Text Book:

1. Statistical Mechanics – K. Huang, Wiley India

Reference books:

- 1. Statistical Mechanics Landau and Lifshitz, ButterWorth
- 2. Statistical Mechanics- R. K. Patheria, P.D. Beale 3rd Ed, Butter Worth-Heinemann
- 3. Fundamental statistical and thermal Physics- F. Reif, Tata Mc Graw-Hill Edition
- 4. Elementary statistical mechanics, C. Kittel, Dover Publication

Sub. Code: PHY-C203	Basic So	Basic Solid State Physics		
Semester: 2	Credit	Core Course		
	: 4			
Pre-requisites: Crystal structure, Bragg's Diffraction, Reciprocal lattice space				
Course Outcomes:				

- ✓ To understand different bond mechanism.
- ✓ To understand evolution of phonon and its importance in electrical and thermal properties
- ✓ To understand F.E.M. and NFEM.
- To understand different class of solids.

Unit-1 10 hours

CRYSTAL BINDING: Crystals of inert gases, Ionic crystals, covalent crystals, Metals Lattice Dynamics-Vibrations of a mono atomic linear chain, Vibration of a diatomic linear chain, Dispersion relations, Acoustic and Optic modes, Longwavelength limits.

Unit-2 10 hours

SPECIFIC HEAT OF INSULATORS AND FEM: Phonon heat Capacity, Debye model for density of states, Debye T 3 law, Einstein's theory of the specific heat Free Electron Fermi gas-Energy levels in one-dimension, Effect of temperature on the Fermi-Dirac distribution function, Free electron gas in three dimension, Heat Capacity of the electron gas, Electrical conductivity and Ohm's law, Motion in magnetic fields, Static magneto-conductivity tensor, Hall effect, Thermal conductivity of metals, Wied man-Franz Law.

Unit-3 10 hours

NEARLY FREE ELECTRON MODEL: Nearly free electron model, origin of the energy gap, Bloch functions, Kronig-Penney model, Wave equation of electron in a periodic potential, restatement of Bloch theorem, solution of the central equation, approximate solution near a zone boundary, number of orbitals in a band, metals and insulators.

Unit-4 10 hours

SEMICONDUCTOR CRYSTALS: Band gap, Holes, effective mass, intrinsic carrier concentration, intrinsic mobility, impurity conductivity, donor states, acceptor states, thermal ionization of donors and acceptors. Defects, Impurity as defect, TM and RE impurities, Multiband Structure, Energy dispersion, Semiconductor and Magnetism, Compound Semiconductors, Different groups of semiconductors, Introduction to Diluted Magnetic Semiconductors. Moore's law, MR-logic Elements and Application.

Reference Books:

- 1. Introduction to the theory of Solid State Physics by J. D. Patterson (Addison-Wesley,1971)
- 2. Solid State Physics by N. W. Ashcroft and N. D. Mermin , (Harcourt Asia P.T.E. Ltd.)
 - 3. Physics of Condensed Matter by Prasanta K. Misra (Academic Press, 2010)

	QUANTUM MECHANICS-II	
Semester:204	Credit:4	Core Course
Pre-requisites: Basic knowledge in Quantum mechanics-1 and Mathematics to handle model description based on physical laws		
Course Outcomes:		
		atoms and their constituents—electrons, c particles such as quarks and gluons.

Unit-1 12 Hours

Motion in a spherically symmetric field:

The hydrogen atom, Reduction to equivalent one body problem, radial equation, Energy eigen values and eigen functions, Degeneracy, Radial probability distribution, free-particle problem, Expression of plane waves in terms of spherical waves. Bound states of a 3-D square well.

Unit-2 12 Hours

Approximate methods:

stationary perturbation theory, Rayleigh Schrodinger method for non-degenerate case, first and second order perturbation, an harmonic oscillator, general theory for the degenerate case, removal of degeneracy, linear Stark effect, normal Zeeman effect.

Unit-3 12 Hours

Variational method: Ground State, First Excited State and Second Excited State of One-Dimensional Harmonic Oscillator, Ground State of H-atom and He-atom.

W. K. B. method: Connection formulas, Bohr-Sommerfeld quantization rule, Harmonic oscillator and cold emission.

Time-dependent perturbation theory:

Transition probability, constant and harmonic perturbation, Fermi Golden rule

Unit-4 12 Hours

Scattering amplitude and scattering cross section:

Born approximation, application to Coulomb and screened Coulomb potentials. Partial wave analysis for scattering, optical theorem, scattering from a hard sphere, resonantscattering from a square well potential. Identical particles, Symmetric and antisymmetric wave function, Scattering of identical particles.

Text Book:

1." Quantum Mechanics:Concepts and Applications" by NouredineZettile John Wiley and sons.

Reference Books:

- 1. "Quantum Mechanics", L.I. Schiff 3rd Ed, McGraw Hill Boo Co. "Quantum Mechanics" E. Merzbacher, 2nd Ed., John Wiley & Sons. "Quantum Physics", S. Gasiorowicz John Wiley.
- **2.** "A Text Book of Quantum Mechanics" by P.M. Mathews. and Venkatesan, Tata McGraw Hill. Introduction to Quantum Mechanics, by D.J.Griffiths, 2nd edition, Pearson Publications

Sub Code: PHY- P205	Optics (I	Laboratory work)
Semester:1	Credit	Core Course
Pre-requisites: Basic knowledge of Optics		
Course Outcomes: To apply the principle of optics in experiments.		

- 1. Experiments with optical bench: Biprism Straight edge and narrow wire
- 2. Experiments with spectrometer: Single and Double split
- 3. Experiments with Michelson interferometer: Determination of A and α Thickness of mica sheet
- 4. Fabry Perot interferometer Polarization Experiments Babinet compensator Edsar-Butlerbands Quarter

wave plate Mallus Law Study of elliptical polarized light

- 5. Constant Deviation Spectrography Calibration Zeeman effect
- 6. Babinet Quartz Spectrography
- 7. Any other suitable experiments
- 8. Any other experiments that may be set up from time to time

Course No. PHY- VAC206A	Course Name: Materia	lls Characterization
Semester: II	Non-Credit	V A C
Pre-requisites:		
Course Outcome: The course sime	to give the theory and he	ands-on-training of the

Course Outcome: The course aims to give the theory and hands-on-training of the instruments facilities available at Berhampur University. This will help the students to understand the spectroscopic techniques required for characterization of materials synthesized in laboratory.

Unit-1 10 Hours

UV-visible spectroscopy: Baseline correction with suitable solvent, blanking the instrument, determination of suitable concentration, quantitative measurement of sample of different concentration. Kinetic measurement of reaction to determine rate constant, spectral measurement of different compounds, data export in different format and plotting in origin. Other tips & things to watch out for when measuring particle size, Band gap measurement using Tauc plot.

Unit- 2 10 Hours

Photoluminescence spectroscopy: Determination of excitation and emission peak for unknown sample, choosing right filter for correct measurement, using solid sample as well as solution sample, measurement in fluorescence and phosphorescence mode for lanthanide doped sample as well as organic molecules. Life time measurement and calculation of life time in single and double exponential plotting in origin. Data export and plotting in origin. Other tips in PL measurement.

Unit-3

X-Ray Diffraction Studies: Basic principles, Baseline correction, Crystal structure determination, Calculation of crystallite size from XRD data, Insertion of negative hkl indices in XRD graph, Calculation of d-spacing, lattice constant, crystalline mode, microstrain, dislocation density, Modified W-H plot for crystallite size/ microstrain and energy density.

Unit-4 10 hours

Magnetic susceptibility Measurement: Elementary idea about magnetic properties of metal complexes, Diamagnetism, Para magnetism, Magnetic susceptibility and its measurement, Ferromagnetism, Ferrimagnetism and Anti-ferromagnetism.

<u>C</u>

Pre-requisites: Quantum Physics, Mathematics and Computation

Course Outcomes:

- 1. To understand a single atom and its behaviour independently.
- 2. To understand evolution of different properties dependent on density functional.
- 3. To understand different approximations leading to better exchange correlation.
- 4. To understand implementation of DFT on Quantum Expresso and codes
- 5. To evaluate numerically different physical properties.

Unit-1 10 hours

Preliminaries: Atomic model, The hydrogen atom, Solution of Schrodinger Equation, Electron

wave functions and energies, Probability distribution. Multi-electron atoms, Hartree-FockTheory, Free electron model(FEM), Nearly free electron model(NFEM)

Unit-2 10 hours

The Schrodinger Equation, Density Functional Theory—From Wave Functions to Electron Density, Exchange—Correlation Functional, Localized and Spatially Extended Functions, Wave-Function-Based Methods, Hartree—Fock Method, Beyond Hartree—Fock. DFT Calculations for Simple Solids, Periodic Structures, Supercells, and Lattice Parameters, Face-Centered Cubic Materials, Hexagonal Close-Packed Materials, Crystal Structure Prediction, PhaseTransformations,

Unit-3 10 hours

Nuts and Bolts of DFT Calculations: Reciprocal Space and k Points, Plane Waves and the Brillouin Zone, Integrals in k Space, Choosing k Points in the Brillouin Zone, Metals—Special Cases in k Space, Summary of k Space, Energy Cutoffs, Pseudopotentials, Numerical Optimization, DFT Total Energies-An Iterative Optimization Problem, Geometry Optimization, Internal Degrees of Freedom, Optimizing Supercell Volume and Shape, Electronic Structure and, Electronic Density of States, Local Density of States and Atomic Charges, Magnetism

Unit-4 10 hours

Applications: **Quantum Espresso**, Materials Cloud, Examples: **Silicon:** Self-consistent Field, Writing the input, Running the code, Reading the output, lattice constant and bulk modulus of silicon, Bands, **Graphene:**, Compute the band-structure.

References: Books

- 1. A Practical Introduction to Density Functional Theory By L. Rademaker
- **2.** Electronic Density Functional Theory Recent Progress and New Directions by John F.Dobson Giovanni Vignale and Mukunda P. Das.

Third Semester

Sub Code: PHY- C301	Relativistic Quantum Mechanics & Field theory	
Semester:3	Credit:4	Core Course
Pre-requisites: Quantum Mechanics, Special theory of relativity, Mathematical Physics		

Pre-requisites: Quantum Mechanics, Special theory of relativity, Mathematical Physics and Electrodynamics.

Course Outcomes:

- ✓ To study the effect of relativity on quantum mechanics and to develop the formulation for Relativistic systems along with the quantization principle.
- ✓ To introduce basic concept of Quantum field theory to understand the dynamics of relativistic systems through creation and annihilation operators

Unit-1 12Hours

Brief introduction to Relativistic quantum mechanics, Klein-Gordon equation and its drawbacks, Charge and current densities, Positive and negative energy states, Klein-Gordon equation in Presence of Electromagnetic field. Dirac Equation, Free particle Dirac equation, Properties of the Dirac matrices, Continuity Equation, Spin of the electron. Gordon Decomposition of Dirac Hamiltonian.

Unit -2 12 hours

Plain wave solutions of Dirac Equation, Normalization of the wave functions, Dirac Hole Theory ,Dirac equation in an electromagnetic field, , its non-relativistic correspondence, ,magnetic moment, Dirac equation in presence Spherically symmetric potential,Dirac Equation in Presence of Central force, spin-orbit coupling, Covariant form of the Dirac equation, Proof of its Lorentz covariance, Properties of the gamma-matrices. Bilinear covariant.

Unit -3 10 hours

Concept of fields, Classical field equation, Noether's theorem and conservation laws, Gauge invariance and charge conservation, Creation, Annihilation and number operators.

Unit -4 14 hours

Field Quantization: (a) neutral scalar meson field (b) charged scalar meson field (c) Dirac field.

Textbooks and reading materials:

- 1. Relativistic quantum field theory by J.D. Bjorken and S.D. Drell(McGraw-Hill Publisher).
- 2. Lectures on Quantum Field Theory, Ashok Das, (World Scientific Publishing Co.)
- 3. Lahiri A, Pal P.B., A First Book of Quantum Field Theory(Narosa Publishing House)
- 4. Quantum Mechanics and Field Theory by B.K. Agarwal (Asia Publishing House

Sub Code: PHY- C302	Electronics	
Semester:1	Credit:4 Core Course	
Pre-requisites: P.N. Junction. Network Analysis (Kirchhoff		
Laws)		

Course Outcomes:

- ✓ To make the student familiar with basic analog and digital electronic components.
- ✓ Understand D.C. analysis and A.C. models of semiconductor devices
- ✓ Apply concepts for the design of Amplifier
- ✓ Understand number representation and conversion between different representations in digital electronic circuits
- ✓ Analyze logic processes and implement logical operations using combinational logic circuits.

Unit-1 12 Hours

Network Analysis: Superposition principle Thevenin and Norton Theorems, BJT, FET,MOSFET: characteristic, biasing-parameter analysis Feedback Circuits. Operational Amplifiers: The differential amplifier, D.C. and A.C. signal analysis, integral amplifier, rejection of common mode signals, CMMR, The operational amplifier, input and output impedances, Application of operational Amplifiers unit gain buffer, summing, integrating amplifier, Comparator, Operational amplifier as a differentiator

Unit -2 8 Hours

Oscillator circuits: Feedback criteria for oscillation, Nyquist criterion, Phase shift, Wien-Bridge oscillator, Crystal controlled oscillator Unit-3 12 Hours

Digital Circuits: Logic fundamentals, Booleantheorem, logicgates: AND, OR, NOT, NOR,

NAND XOR, and EXNOR.RTL, DTL and TTL logic, Flip-flop, RS-and JK-Flip flop, A/D and D/A Convertors

Unit-4 12 Hours

Optoelectrics Device:

Principle of optical sources, Source material, Choice of materials, Internal and external quantum efficiency of L.E.D., Structures, Types of L.E.D.: Surface emitting L.E.D., Edge emitting L.E.D., Modulation capability, emission pattern, power bandwidth product, laser Diode Modes, Threshold condition, resonant frequency, Laser Diode Structure, Brief description of principle of optical detectors, Photomultipliers P.I.N. and A.P.D. configuration, Solar Cell

Textbooks and reading materials

- 1. Electronic fundamental and application by J.D. Ryder, PHI, Learning Pvt Ltd.
- 2. Electronics: Circuits and Analysis, D.C.Dubey, Alpha Science
- 3. R.P.Khare, Fiber Optics and Optoelectronics, Oxford University Press

References:

- 1. Foundation of electronics Chattopadhyay, Rakshit, Saha and Purkait, New age International publisher
- 2. Electronics principles-Albert Malvino, Tata Mc Graw-Hill Edition
- 3. Modern Digital Electronics-R.P Jain, Tata Mc Graw-Hill Edition

Sub Code: PHY- C303A	Condensed Matter and Material Physics	
Semester:3	Credit:4	Core Course

Pre-requisites: Basic knowledge in solid state physics, Classical mechanics, Quantum mechanics and elementary mathematics to handle model description based on physical laws

Course Outcomes:

- ✓ To provide an introduction to the physics of condensed Matters
- ✓ To make them acquainted with the areas like quantization of lattice vibrations, electron—electron interaction, superconductivity and Advanced Superconductivity.

Unit-1 12 Hours

Quantisation of lattice vibration: Phonons, normal coordinate transformation, creation and annihilation operators. Methods of band calculation-Tight binding method, O.P.W. and pseudo potential methods. Fermi Surface, de Haas-van Alphen effect. Transport theory-Boltzmann equation, relaxation time approximation, electrical conductivity and thermal conductivity.

Unit-2 12 Hours

Electron-electron interaction:Hartree approximation, Hartree-Fock approximation, Hartree-Fock theory for jellium model. Density functional theory-general formulation, Local Density Approximation., General formalism of Screening, Thomas-Fermi Approximation.

Unit-3 12 Hours

Superconductivity: Occurrence of superconductivity, Meissner effects, Type- I and II superconductors, energy gap, Isotope effect, Theoretical survey: Thermodynamics of superconducting transition, London equations, coherence length, Qualitative ideas about the B.C.S. theory, Single particle tunneling, Josephson effect.

Unit-4 12 Hours

Advanced Superconductivity: Electron-phonon interaction, Microscopic theory of superconductivity, Quasi electrons, Cooper pairs, B.C.S. theory, Ground State of superconducting electron gas, elementary ideas of high Tc superconductors

Text Book:

- 1. Physics of Condensed Matter By Prasanta K. Misra(Academic Press, 2010)
- 2. Quantum Theory of Solid State by J.Callaway(Academic Press)

Reference books:

- 1. Principles of the theory of solids, J. M. Ziman(Cambridge and University press)
- 2. Solid State Physics by C. Kittle (John Wiley and sons, Ins Singapore)

- 3. Introduction to the theory of Solid State Physics by J. D. Patterson (Addison-Wesley, 1971)
- 4. Intermediate Quantum Theory of Crystalline Solids by Alexander O.E. Animalu (Prentice Hall of India, 1978)

Sub Code: PHY-E303B	Nuclear Science-I	
Semester:1	Credit:4	Elective course
Pre-requisites: Basic Nuclear Science		

Course Outcomes:

✓ To understand the advance of Nuclear Physics

Unit-1 12 Hour

Rotation of Matrix and Tensor: Rotational invariance in three dimensions, eigen values a eigen functions of angular momentum operators, explicit representation of the rotation matrice Addition of angular momenta, Clebsch-Gordon coefficients, irreducible spherical tensor, matrielement of tensor operators, Wigner-Eckart theorem

Unit-2

Optical model: Optical model, deuteron stripping and pick-up reaction, Elementary ideas Brueckner theory

Unit-3 12 Hours

Collective Model: Collective Vibrational modes of a spherical nucleus, collective oscillation quadruple deformation, Expression for moment of inertia.

Unit-4 12 Hours

Rotational Spectra: Rotational spectra of even-even nuclei, coupling of a particle and collecti motion, electric quadruple moments, magnetic dipole moments

`Textbooks:

1. Nuclear Physics by R.R. Roy and B.P. Nigam, John Wiley

Reference Books:

- 1. Physics of the nucleus by M.A. Preston, Addison Wesley.
- 2. Nuclear Physics by S.S.M. Wong, Prentice Hall.
- 3. Introduction to Nuclear Physics by H. A. Enge, Addison Wesley
- 4. Structure of the Nucleus by M. A. Preston and R K Bhaduri, Addison Wesley

Sub Code: PHY- P306	Modern Physics	
	(Laboratory work)	
Semester:1	Credit:4	Core Course
Pre-requisites: Basic knowledge of Modern Physics		
Course outcomes:		
✓ To design and analyze experiments in Modern Physics		

- 1. Determination of e/m by
 - I) Braun tube method
 - II) Magnetron Valve method
- 2. Determination of Planck's constant(h) by Photo-electric effect methods
- 3. Measurement of velocity of light by Lecher wire
- 4. G.M. counter experiments:
 - I) Characteristics of the Geiger tube
 - II) Inverse Square Law.
 - III) Absorption coefficient of the Aluminium foil.
- 5. Characteristics of Diode and Zener diode.

- 6. Study of logic gates AND, OR, NOT, NAND, NOR, EXOR.
- 7. Making AND, OR, NOT Gates using NAND Gates.
- 8. Verification of Boolean Algebra.
- 9. Verification of Dual nature.
- 10. Characteristics of F.E.T. (Field Effect Transistor).

Any other experiments that may be set up from time to time

Sub Code: PHY-E301	Fiber Optics and Optoelectronics	
Semester:4	Credit:4	
		Elective Course
Pre-requisites: Basic Physics at the higher secondary level		
Course outcomes:		
✓ The objective of this course is to familiarize students the role of fiber optics inday today applications.		
✓ To provide basic knowledge for designing simple experiment using L.E.D., Fiber and Detector		

Unit- 1 12 Hours

Optical fiber:Optical fiber structure: Step Index Fiber, Graded Index Fiber, Transmission of light through cylindrical waveguide by using electromagnetic theory. Single mode and multimode fibers, modal concept, modes in step index and graded index fiber,V-number, power flow in Step Index fiber. Different types of fiber, Elementary idea on Fiber Materials, Fabrication method: Double Crucible Method, fiber optic Cables, Photonic crystal fiber and Fiber Bragg Grating

UNIT-2 10 Hours

Signal degradation in Optical Fiber: Attenuation, Absorption, bending Loss, Scattering Loss, Core Cladding losses, dispersion losses, Material dispersion, waveguide dispersion, Modal dispersion, Signal distortion in single mode fibers, Design of optimization of single mode fibers. Dispersion shifted and Dispersion flattened fiber.

Unit-3 08 Hours

Connector, Couplers and Splices: Connector and splice, losses during coupling between source fibers, fiber to fiber, Lensing scheme for coupling improvement, Joint losses, multimode fiber joints, single mode fiber joint, Fusion splice, Mechanical Splices, Multimode splices, connector and coupler

Unit-4 12 Hours

Optical Source and Photodetector: Principle of optical sources, Source material, Choice of materials, Integral and external quantum efficiency of L.E.D., Structures, Types of L.E.D.: Surface emitting L.E.D., Edge emitting L.E.D., Modulation capability, emission pattern, power bandwidth product, laser Diode Modes, Threshold condition, resonant frequency, Laser Diode Structure, Brief description of principle of optical detectors, Photomultipliers P.N., P.I.N. and A.P.D. configuration, Photodetector noise, Noise sources, SNR, Detector response time

Textbooks:

- 1. R.P.Khare, Fiber Optics and Optoelectronics, Oxford University Press
- AjoyGhatak and K.Thyagarajan, An Introduction to Fiber Optics, Cambridge University Press
 Reference Books:
- 1. G. Keiser, Optical Fibre Communications, Mc-Graw-Hill.
- 2. J.M.Senior, Optical Fibre Communications Principles and Practice, PHI.

OR

Sub Code: PHY-VAC305A	Atomic and Molecular Spectra	
Semester:4	Non-Credit	VAC
Pre-requisites: Basic knowledge in Quantum Mechanics-I, Modern Physics, Basic Nuclear Physics		
Course outcomes:		
✓ To understand different atomic models and their developments		

To learn behavior of atom and molecules in the presence of electric and magnetic

✓ To understand atomic and molecular spectra

field and molecular vibration.

Unit-1 12 Hours

Revision of Hydrogen atom; Bohr-Summerfield Theory, quantum theory of hydrogen atom, wave functions, orbital and spin angular momentum, magnetic dipole moment, spin orbit interaction, fine structure, spectroscopic term and notation. Hydrogen fine structure. Spectrum of Helium.

Unit-2 12 Hours

Hartrees' central field approximation, atomic orbital and Hund's rule. L.S and J.J Coupling

Unit-3 12 Hours

Normal and Anomalous Zeeman effect, Explanations of Zeeman Effect in some transitions. Paschen-Bach Effect Stark-Effect: Weak field and strong field Starkeffect in hydrogen. Hyperfine structure and isotope effect, nuclear spin and hyperfine structure.

Unit-4 12 Hours

Types of molecular spectra, Electronic spectra, Vibrational-Rotational spectra, molecule as a harmonic and non-harmonic oscillator, Pure Rotational Spectra, molecule as a rigid and non-rigid rotator. The Raman spectra and molecular structure.

Text Book:

- 1. Atomic and Molecular spectra: Laser by Raj Kumar
- 2. Introduction to atomic spectra by H. E. White OR

Sub Code: PHY-VAC305B	ASTRONOMY AND ASTROPHYSICS	
Semester:3	Non- Credit:4	VAC

Pre-requisites: Basic knowledge in Quantum Mechanics-I, Modern Physics, Basic Nuclear Physics

Course outcomes:

- 1. To understand Tools of Astronomy and celestial mechanics
- 2. To introduce basic astronomical principles in the study of the planets, stars and galaxies.

UNIT I: 15 Hours

Celestial Mechanics and Astrometry: The celestial Sphere, Positions of stars, Proper motions of stars and planets, Distances of nearby stars.

Tools of Astronomy: Telescopes: Basic Optics, Optical Telescopes, Radio Telescopes, Infrared,

Ultraviolet, X-ray, and Gamma-Ray Astronomy – detectors and observatories Gravitational Waves detectors and Neutrino detectors All-Sky Surveys and Virtual Observatories.

UNIT II: 15 Hours

The Solar System: The Sun, The Physical Processes in the solar system, The Terrestrial and the Giant Planets, Formation of Planetary Systems.

Basic Stellar Parameters: The brightness of the stars, Color-magnitude diagrams (The HR diagrams), The luminosities of the stars, Angular radii of stars, Effective temperatures of stars, Masses and radii of stars: Binary stars, Search for Extrasolar Planets

UNIT III: 15 Hours

The Nature of Stars: Spectral classification, Understanding stellar spectra, Population II stars, Stellar rotation, Stellar magnetic fields, Stars with peculiar spectra, Pulsating stars, Explosive stars, Interstellar absorption

UNIT IV: 15Hours

Our Galaxy And The Interstellar Matter: The shape and size of our Galaxy, Interstellar extinction and reddening, Galactic coordinates, Galactic rotation, Stellar population, Inter Stellar Medium, The galactic magnetic field and cosmic

References:

- 1. Introduction to Stellar Astrophysics, Volume 1, Basic stellar observations and data, ByErika Bohm-Vitense, Cambridge University Press
- 2. An Introduction to Modern Astrophysics, Second Edition, By Carroll B.W., Ostlie D.A., Pearson Addison Wesley.
- 3. "Astrophysics for Physicists" by Arnab Rai Choudhuri, Cambridge University Press, 2010
- 4. Galactic Astronomy: Structure and Kinematics by Mihalas & Binney, W.H.Freeman & Co Ltd; 2nd Revised edition 1981.

Sub Code: PHY-VAC305C	OPTICAL FII	BRE SENSOR
Semester:3	Non-	VAC
	Credit:4	
D	1 1 0 4 1	

Pre-requisites: Basic knowledge in Quantum Mechanics-I, Modern Physics, Basic Nuclear Physics

Course outcomes:

Identify different types of optical sensors and their performance characteristics - Analyze a
given sensing requirement and design an appropriate sensor - Realize and implement an
optimal sensing solution for a given requirement

UNIT-1 12 Hours

Need for optical sensors • Different types of Sensors • Optical receiver design; noiseissues,

UNIT-II 12Hours

Amplitude Modulated sensors • Lock-in detection, Phase modulated sensors • Phase noise analysis and mitigation; Sensitivity limits, Wavelength modulated sensors •

UNIT-III 12Hours

Interrogator design, sensitivity limits, Polarization Modulated Sensors

UNIT-IV 12Hours

Analysis of current sensor, Distributed Fiber Sensors • Raman & Brillouin scattering-based sensors.

Reference:

1. R.P.KHARE, Oxford University Press

Fourth Semester

Sub Code: PHY-	Elementary Particle Physics	
E401A		
Semester:4	Credit:4	Elective
		Course

Pre-requisites:

- ✓ Basic knowledge in Quantum mechanics,
- **✓** Relativistic QuantumMechanics

Course Outcomes:

- ✓ The main goal of particle physics is to learn about the universe around us.
- ✓ Over the past half century, particle physicists have formulated the Standard Model, a beautiful framework that explains the visible universe from the smallest to the largest scales.

Unit-1 12 Hours

Historical introduction to the Elementary Particles, Classification of elementary particles and their interactions: Photons, Leptons, Quarks, Mesons, Baryons. Lepton number, Baryon number, color quantum number, Strangeness quantum number.

Unit-2 12 Hours

Charge independence of nuclear forces, Isospin, Test for isospin conservation, Associated Production of Strange particles, Gell-Mann Nishijima scheme, conservation laws in relation to particle reactions and decays.

Unit-3 12 Hours

Unitary Symmetry: SU (2), SU (3), Concept of I-Spin, U-Spin, V-Spin, SU(3) Quark model, The Eight-fold way, Mesons and Baryons in the Octet representation. The BaryonDecouplets, Evidence of color, Gell-Mann–Okubo mass formula.

Unit-4 12 Hours

Discrete Symmetry:

Parity (P): Parity in quantum mechanics and Field theories, Test of Parity. Time reversal (T): Time reversal in quantum mechanics and Field theories, Test of Time reversal Charge conjugation (C): Additive quantum number, Charge conjugation in field theories, Test of Charge conjugation. C.P.T. theorem and its consequences

Text Book:

- 1. "Introduction of Elementary Particles", D.Griffith, John Wiley
- 2. "Quarks and Leptons" Halzen, F. and Martin, A.D., John Wiley
- 3. "Gauge theory of Elementary Particle, T.-P. Cheng and L.-F.Li, Physics' 'Oxford University Press
- 4. S Gasiorowicz ".Elementary particle physics" by. John Wiley &Sons.
- 5. Modern Elementary Particle Physics by G.Kane, Addison-Wesley Publishing Company
- 6. Mark Thomson "Modern Particle Physics" Cambridge University Press.

OR

Sub Code: PHY- E401 B	General Theory of Relativity (G.T.R.)	
Semester:4	Credit:4	Elective
Pre-requisites · Tensor algebra Quantum Mechanics		

Pre-requisites: 1 ensor algebra, Quantum Mechanics

Course outcomes:

- ✓ To learn about the advances in General Theory of Relativity.
- ✓ It will give the basic knowledge of Gravity as a geometry of space-time, gravitational waves and the formation of astrophysical objects.

Unit-1 12 hours

Special theory of relativity: Lorentz transformations; 4-vectors, Tensors and it's transformation properties, Contraction, Symmetric and antisymmetric tensors; 4-dimensional velocity and acceleration; four-momentum and four-force; Covariant equations of motion; Relativistic kinematics (decay and elastic scattering); Lagrangian and Hamiltonian of a relativistic particle.

Unit-2 12 hours

The Equivalence Principle, The Weak and Strong Principle of Equivalence, The Equation of Motion in presence of Gravitational Forces, The affine connection, The Metric Tensor $\mathbf{g_{uv}}$, Relation between Metric Tensor and Affine Connection, The transformation of Affine Connection, Covariant derivatives.

Unit-3 12 hours

The Newtonian Limit: Relation between g_{00} and the Newtonian potential, Time Dilation in a Gravitational Field, Red shift of spectral lines, The Solar Red Shift.

Unit-4 12 hours

Definition of Curvature tensor, Algebraic Properties of the curvature Tensor, Ricci Tensor and Curvature Scalar, Bianchi identities. Einstein's field Equations, Energy, Momentum and Angular momentum of gravitation.

Textbooks and reading materials:

- 1. Special theory of relativity, Robert Resnick (Oxford University)
- 2. Gravitation and Cosmology by Steven Weinberg (Jon Wiley and Sons) References:
- 3. Introducing Einstein's Relativity by Ray D Inverno (Clarendon Press)
- 4. An Introduction to General Relativity and Cosmology by Tail. Chow, (Springer)
- 5. Principles of Cosmology and Gravitation by M. Berry(Cambridge University)
- 6. Special theory of relativity, Robert Katz D. Van (Nostrond Company, I.N.C.

Sub Code: PHY- C402	Basic Nuclear Physics	
Semester:3	Credit:4	Core Course

Pre-requisites: Quantum mechanics (I and II), Electrodynamics, Mathematical Physics

Course Outcomes:

- ✓ To understand the basic properties of Nucleus and Nuclear matter.
- ✓ To learn and understand about Deuteron, Scattering, Nuclear energy and Nuclear Model.
- ✓ To understand the application of Quantum mechanics in Nuclear physics and its correlation with Atomic and Particle Physics

Unit -1 12 Hours

Nuclear properties: Nuclear Radius, Nuclear Mass and Binding Energy, Angular Momentum, Parity and Symmetry, Magnetic Dipole Moment and Electric Quadruple Moment.

Two nucleons Bound state problem: Central and non-central force, the deuteron, tensor forces, magnetic moment and quadruple moment of deuteron

Unit -2 12 Hours

Nucleon scattering problem: n-p scattering at low energy, scattering cross section and scattering Length, effective range theory.

Nuclear force: Meson theory of nuclear force, Yukawa interaction

Unit-3 12 Hours

Nuclear reaction and resonances, Breit-Wigner formula for s-waves, compound nucleus. Liquid drop model, Bohr-Wheeler theory of fission, nuclear fusion

Unit -4 12 Hours

Single particle model of nucleus, magic numbers, spin-orbit coupling, angular moment and parities of nuclear ground states, magnetic moments and Schmidt lines, Collective model of Bohr and Mottelson.

Text Book:

- **1.** Nuclear Physics by R.R. Roy and B.P. Nigam (John Wiley)
- 2. Nuclear Physics by D.G Tayal, Himalaya Publishing House
- 3. Nuclear Physics by S.N. Ghoshal, S. Chand

Reference books:

- **1.** Physics of the nucleus by M.A. Preston (Addison Wesley)
- 2. Nuclear Physics by S.S.M. Wong (Prentice Hall)
- **3.** Introduction to Nuclear Physics by H. A. Enge (Addison Wesley)

Reference books:

1. The Fundamentals of Atomic and Molecular Physics by L.Robert, Springer

Sub Code: PHY- E403	Project and Ser	minar
Semester:4	Credit:4	PROJECT
	•	

Course outcomes:

✓ The main objective of this course is to work in a mini project, learn about how to prepare a research report and present before an audience.

Sub Code: PHY- E404A	Condensed Matter and Materials Physics	
Semester:4	Credit:4	
		Elective
Pre-requisites: Basic Solid State Physics		
Objectives:		

Objectives:

✓ The main objective of this course is to learn about optical and magnetic properties of materials and their response to internal and external stimuli

Unit-1 12 Hours

Optical properties: Absorption, intraband and inter band transition, Absorption spectra of materials, Luminiscence, Fluorescence, phosphorescence, Colour centres, Basic ideas of Absorption and Fluorescence Spectroscopy. Lasers-principles, Induced absorption, Spontaneous Emission and stimulated Emission, Einstein A and B Coefficients, Ruby laser, Helium-Neon Laser and Semiconducting Laser.

Unit-2 12 Hours

Magnetism: Langevin Diamagnetism and Van Vleck Paramagnetism, Paramagnet: Derivations of Curie law, Pauli paramagnetic susceptibility, Ferromagnetism: Curie point and the exchange interaction, Curie-Weiss law, Ferrimagnetic order, Curie temperature and susceptibility of ferrimagnets, Antiferromagnetic order, susceptibility below the Neel temperature.

Unit-3

Dielectric and Ferroelectric Properties

12 Hours

Maxwell equation and polarization, Macroscopic electric field, local electric field at an atom, Dielectric constant and polarizability, classical theory of electronic, ionic and orientation polarization, Clausius Mossotti Relation, Frequency dependence of polarization Structural phase transition, classification of ferroelectric crystal, Displacive Transitions: Soft optical phonon, Landau theory phase transition ,second and first order transition Anti-ferroelectricity and Piezoelectricity

Unit-4 12 Hours

Novel Materials: Metallic nano clusters: Nano science and nano clusters, liquid drop model, size and surface volume ratio. Graphene: Graphene lattice, tight binding approximation, Dirac Fermions

Charecterisation of materials:XRD,Bragg law, Laue conditions, Geometrical Structure factor and Atomic form factor,Basic principles of Electron Spin Resonance, N.M.R.. Basic principles of Raman Effect in crystals and Mossbauer techniques

Text Books:

- 1. Introduction to Solid State Physics , C. Kittel, John Wiley and Sons, Inc. Singapore
- 2. Optical Properties of Solids, MarkFox, Oxford University Press
 - 3. Physics of Condensed Matter- PrasantaK. Misra (Academic Press, 2010)

References:

4. Solid state Physics by Ascheroft and Mermin, Harcourt Asia PTE. Ltd. (A Harcourt publishers International company)

Sub Code: PHY- E404B	Nuclear Science-2 (Field Theory and Particle Physics)	
Semester:4	Credit:4	Elective

Pre-requisites: Quantum Field theory, Elementary Particle Physics and Mathematical Physics.

Course outcomes:

- ✓ To learn the field theoretic techniques as applicable to the interacting elementary particles and to be conversant with the current status of particle physics.
- ✓ To learn the fundamental concept of spontaneous breaking on the basis of weak interaction along with decay width calculation.

Unit-1 12 hours

Field Theory:

Unequal space time commutation and anti-commutation rules for field operators. Propagator functions and their integral representations, Vacuum expectation values, Feynmann propagators, Concept of T-Product and Normal Product, Feynman diagram rules in coordinate and momentum space, Wick's Theorem, Properties of scattering matrix, Brief idea of electron-photon scattering.

Unit-2 12 hours

Particle Physics:

Brief review of elementary particles and their interactions, S.U. (3) Quark Model, The Baryon and Meson State, Baryon-Meson coupling: The F and D terms, Gell-Mann-OKubo mass formula. The Heavy Quarks: Charm and Beyond, S.U. (6) Quark Model: wave-function for Mesons and Baryons, Magnetic moment of Baryons.

Unit-3 12 hours

Weak Interaction: V-A form of weak interaction, , Muon and Pion decay calculation, elementary notion of leptonic decays of strange particles, the Cabibbo angle, intermediate vector bosons, Elements of Neutral K-meson theory: Decay of Neutral K-mesons, regeneration of K-mesons, CP violation in neutral K decay.

Unit-4 12 hours

Spontaneous symmetry breaking, Higgs Mechanism, Brief idea of Salam-Weinberg Theory of Standard Model. Neutrino Physics: Neutrino Mass and Experimental limits, Neutrinoless Double-Beta decay, Neutrino oscillation, Solar neutrino puzzle, Magnetic moment of neutrino.

Textbooks and reading materials

- 1. Introduction to Elementary Particles by D.Griffiths, John Wiley & sons.
- 2. Relativistic quantum field theory by J.D. Bjorken and S.D. Drell, Mc Graw-Hill Book Company.
- 3. An Introductory Course of Particle Physics, Palas.B.Pal. C.R.C. Press.
- **4.** Elementary particle physics by Gasiorwicz, Addison-Wesley publishing Company
- **5.** Elementary Particle Physics by G.Kallen, Addison-Wesley publishing Company
- **6.** Quarks and Leptons: F.Halzen and A.D.Martin, John Wiley.
- 7.A Modern introduction to particle physics : Fayyazuddin and Riazuddin, World Scientific, Singapore.

Sub Code: PHY- E405A	CONDENSED MATTER &MATERIALS PHYSICS	
L+U3A	(Lah	oratory work)
	(Eus	oracory work)
Semester:1	Credit:4	Elective
		Course
Pre-requisites:	Basic knowledge of	Condensed Matter and Materials Physics
		<u> </u>
Course outcomes:		
/ T. d.:	-1	Sandana d Martana and Martania la Dissaira
✓ To design and an	aryze principies in C	Condensed Matter and Materials Physics.

- 1. Determination of energy gap of a given semiconductor by four probe method
- 2. Determination of Hall constant of a sample and its identification
- 3. Determination of energy gap by p-n junction method
- 4. Study of dispersion relation of an electric analog of mono atomic linear chain
- 5. Study of dispersion relation of an electric analog of diatomic linear chain
- 6. Determination of specific heat of a given sample using a thermocouple
- 7. Determination of dielectric constant of a given sample by lecher wire method
- 8. Determination of B-H curve of a given ferromagnet

Any other experiments that may be set up from time to time.

Sub Code: PHY- P405B	Nuclear Science (Lab	oratory work)
Semester:1	Credit:4 Elective	
	Course	
Pre-requis	sites: Basic know	ledge of Condensed and Material
Physics		
Course outcomes:		

- ✓ To design and analyze experiments in Nuclear Science
- 1. Determination of half-life of unknown source
- 2. Determination of linear absorption coefficient
- 3. Verification of inverse square law
- 4. Experiment with gamma ray spectrometer
- i. Energy analysis of unknown gamma source
- ii.Spectrum analysis of 60 Co and 137 Co
- iii.Activity of Gamma emitter
- 5. High resolution of gamma ray spectroscopy Energy resolution with Ge (Li) detector Photo pick efficiency for Ge(Li) detector

Any other experiments that may be set up from time to time

Sub Code: -VAC406	Cultura	al Heritage of Southy Odisha
Semester:1	Credit:4	VAC
	Pre-req	uisites:

Course outcomes:

- ✓ The teaching impated to P.G students of Berhampur university on the various dimensions of the literary and cultural heritage of South Odisha will help them to acquire the valuable understanding of the same .
- ✓ They will be inspired adequately to take the positive learnt from the course and use them in future in their personal literary and cultural pursuits and their by promote the literature and culture of the odisha on a Global Scale

Unit I	Literary work of Kabi Samrat Upendra Bhanja
Unit II	Other Literatures of South Odisha

Unit III	Cultural Heritage of South Odisha
UNT IV	Folk and Tribal Traditions of South Odisha